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Abstract

This paper investigates the use of a neural-network-based intelligent learning system for the prediction of drug release

profiles. An experimental study in transdermal iontophoresis (TI) is employed to evaluate the applicability of a

particular neural network (NN) model, i.e. the Gaussian mixture model (GMM), in modeling and predicting drug

release profiles. A number of tests are systematically designed using the face-centered central composite design (CCD)

approach to examine the effects of various process variables simultaneously during the iontophoresis process. The

GMM is then applied to model and predict the drug release profiles based on the data samples collected from the

experiments. The GMM results are compared with those from multiple regression models. In addition, the bootstrap

method is used to assess the reliability of the network predictions by estimating confidence intervals associated with the

results. The results demonstrate that the combination of the face-centered CCD and GMM can be employed as a useful

intelligent tool for the prediction of time-series profiles in pharmaceutical and biomedical experiments.
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1. Introduction

Artificial intelligence (AI) is a multi-disciplinary

field focusing on the study and creation of

computing systems that exhibit some form of

human intelligence. AI has been widely applied

to real world problems recently because it provides

a powerful tool to assist our work and also greatly

to improve our ability to accomplish work. The

main challenge of AI research is knowledge

acquisition. This distinguishes AI computing

from conventional computing. With the ability to

draw inferences from a knowledge base, the

computing system can be used as an intelligent
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learning system in various application domains
[1,2].

AI encompasses a number of methodologies

including neural networks (NNs) [2]. NNs are

relatively crude mathematical models based on a

physiological understanding of the nervous sys-

tems that learn from experience. They emulate a

biological neural system that receives inputs from

other sources, combines them in some way, per-
forms a general nonlinear operation on the result,

and then outputs the final result.

NNs, acted as an intelligent learning system, can

provide useful aids in many tasks. It is a powerful

tool for learning nonlinear mappings from data

[3]. NNs are able to model and map a vector of

input variables with a vector of output variables.

Moreover, they have the ability to generalize the
acquired information, i.e. once trained, the net-

work can process previously unseen data to predict

a response [4]. Therefore, NNs require minimum

prior understanding of the underlying process or

phenomenon before making predictions. In addi-

tion, NNs are adaptable and flexible [5] in the way

they deal with new and changing environment,

and, are relatively easy to maintain. These features
make NNs suitable for modeling and solving non-

linear estimation and predictions problems.

Recently there has been an increasing interest in

NNs for biomedicine research. In pharmaceutical

and pharmacokinetic areas, NNs have been ap-

plied to model complex relationships between

causal factors and response variables [6�/9]. In

[6], they compared the performance of a mechan-
istically-based model and an empirical NN model

to describe the relationship between the tissue-to-

unbound plasma concentration ratios (Kpu ’s) of

14 rat tissues and the lipophilicity (log P ) of a

series of nine 5-n -alkyl-5-ethyl barbituric acids.

The results showed that the overall predictive

power of the NN model is better than that of the

mechanistically-based model. The reason for this is
that building the NN model is equivalent to fitting

an arbitrary (and, therefore, more flexible) multi-

variate function to the data samples. On the other

hand, building the mechanistically-based model is

equivalent to selecting a particular function type

for the data samples, due to rigid modeling

assumptions. An NN system was reported in [7]

to predict peaks and troughs of gentamicin serum
concentrations based on a set of empirical data,

and the results were comparable with those using

nonlinear mixed effect modeling. In [8,9], they

demonstrated that a multi-objective simultaneous

optimization technique incorporating NNs was

useful in optimizing formulae of pharmaceutical

responses that are non-linearly related to the

process variables.
The approach reported in the above works

requires a priori assumption for selecting a math-

ematical model before applying the NN model to

predict coefficients of some parametric equation

that characterizes the drug dynamics. Instead of

predicting parameters of models or equations that

characterize certain drug dynamics, we, however,

demonstrate that NNs could be used as a predictor
to model and predict the drug release profile

directly, in a non-linear time-series form. In this

paper, an experimental study was conducted to

evaluate the applicability of a NN model, i.e. the

Gaussian Mixture Model (GMM) [10], to predict

drug release profiles in a time-series form. In NN

applications, a good set of training data is of

paramount importance for the NN learning algo-
rithm to capture the underlying dynamics of the

problem domain. Therefore, in this work, we

employed a design of experiment technique in

Response Surface Methodology (RSM), i.e. the

face-centered Central Composite Design (CCD)

[11], to collect a representative set of domain data

samples for training the GMM.

The RSM is a useful approach to minimize the
number of experiment trials, especially for an

unknown system with single or multiple responses

in multi-variable systems. Several researchers [12�/

14] have investigated the use of RSM in drug

release profile research. The RSM has been

demonstrated to be a useful method to approx-

imate the true system behavior as a function of the

formulation and process variables, and to deter-
mine the apparent optimum conditions. The work

in [12] demonstrated the applicability of regression

models based on RSM and NNs to estimate the

coefficients of a mathematical model that char-

acterizes the in vitro drug release profile of a

hydrophilic matrix capsule system. In [13], the

RSM was applied to examine the effects of a
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number of pharmacokinetic variables on a tablet
based on vegetable extract. In [14], a study on

iontophoresis of thyrotropin-releasing hormone

facilitated by periodically mono-phase-pulse cur-

rent across excised skin was conducted. The

optimum operating conditions were achieved via

the RSM by systematically adjusting the corre-

sponding variables in experiments.

In this paper, we demonstrate the combination
of RSM and NNs for the prediction of drug

release profiles. The main objective of using face-

centered CCD is not to search for optimum

process conditions. Rather, we examine the feasi-

bility of applying the face-centered CCD to design

a set of experiments such that a representative data

samples for training the GMM can be collected.

The rationale is to exploit the powerful and
flexible data learning properties of the GMM to

model and predict the drug release profiles given a

well-represented data space constructed by experi-

mental samples collected through the face-centered

CCD.

2. Experimental

2.1. Methods

2.1.1. The Gaussian mixture model

The GMM is based on the structure of the

Radial Basis Function Networks. Fig. 1 depicts

the network structure of the GMM. The network

consists of three layers of nodes, i.e. the input

layer, hidden layer (composed of radial basis

function units), and output layer. Each radial

basis function unit has a vector of center, c . The
links between the hidden layer nodes and output

layer nodes are the network weights, w . The

output layer performs a linear combination of

the outputs from the basis nodes. Thus the output

of the network is:

y(x̄)�
XH

i�0

wif(ai) (1)

where H refers to the number of nodes in the

hidden layer, and vector a refers to the distance of

the input vector x to each of the centers in the

hidden layer. In generally, the Euclidean norm is
used to compute distance:

ai�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

j�1

(xj�cij)
2

vuut (2)

where d is the dimension of the input vector x . In

this network, the radial basis function, f(ai) is

Gaussian function:

f(ai)�exp�(a2
i =s

2
i ) (3)

where si is the width of the basis function.
Basically, the GMM uses a two-stage training

algorithm to determine the network weights using

the training data set. The advantage of this two-

stage training is that the non-linear representation

given by first layer of the network can be

determined using a large quantity of unlabeled

data, leaving a relatively small number of para-

meters in the second layer to be determined using
the labeled data. Therefore, the training speed for

this network is relatively faster than the conven-

tional multi-layer Perceptron network trained with

backpropagation [15]. Note that the labeled data

samples consist of known (input�/output) vector

pairs sampled from an unknown model, while the

Fig. 1. The architecture of the GMM.
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unlabeled data samples consist of observed input

samples exclusively. Therefore, the first stage of

training is termed unsupervised as only the input

vector is provided for training process, while the

second stage is considered as supervised training as

the desired output vectors are specified for the

input vectors.

In the first stage of training, the K -means

clustering algorithm [16] is used to determine the

initial center points. The center points are then

optimized using the expectation maximation (EM)

algorithm [17]. The basis function widths, si , are

tuned by setting to the maximum inter-center

square distance after the network is trained by

EM-algorithm. In the second stage, the generalized

cross-validation (GCV) [10] method is used to

determine the weights between the hidden and

output layers. Note that the above description is a

concise account on the network structure and

learning strategy of the GMM; a detailed explana-

tion with mathematical equations of GMM can be

found in [10].

2.1.2. The bootstrap method

Confidence intervals are regarded as the range

of values that are likely to contain the true value of

a population parameter. In this study, the boot-

strap method [18] is used to estimate the con-

fidence intervals of the network predictions.

Bootstrap is a form of randomization test*/one

of the alternatives to exhaustive re-randomization.

Bootstrap involves generating subsets of data on

the basis of random sampling with replacements as

data are sampled. This method has no constraint

upon the number of times that a datum may be

represented in producing a re-sampled subset. The

size of re-sampled subsets may be fixed arbitrarily

which is independent on the parameter of the

experimental design, and may even exceed the

total number of data samples. Therefore, the

bootstrap method can be used for estimating

confidence interval of parameters when the under-

lying distribution function of the parameters is

unknown.

The produce of bootstrap in estimating con-

fidence intervals is as follows.

1) Collect a sample (xl, x2, . . ., xn ) with mean â

that defines a discrete distribution function Ĝ

having mass (1/n ) at each of the n sample

points.

2) Draw, with replacement, a sample randomly

from Ĝ: The distribution of each x*i in the

bootstrap sample is Ĝ�i; x1�
i , x2�

i , . . ., xn�
i �//

Ĝ�i:/
3) Calculate the new mean, â�i:/
4) Repeat steps 2 and 3 m times to obtain

â�1; â�2; . . . ; â�m:/
5) Sort the bootstrap mean values in ascending

order, â�1B â�2B � � �B â�m
/.

6) Calculate the confidence intervals from the

sorted list. The 100(1�/a)% 100 confidence

interval is (â�c1 ; â�c2 ); where c1�/ma /2 (upper

limit), and c2�/m �/c1�/1 (lower limit) (e.g.
a�/0.05 for 95% confidence interval).

2.2. Procedures

In the process of developing a new form of drug,

selecting an appropriate formulation of various

drug compositions and the associated process

variables to meet the required release profile is a

very time-consuming task. The usual way is to
conduct a series of physical experiments, based on

trial-and-error and experience of the drug formu-

lator, with different process variables in order to

obtain a desired profile. This is indeed a difficult

and laborious task. In this paper, we propose that

an intelligent prediction tool, such as a NN trained

using existing profile data from different experi-

ments, could be used to predict a new drug release
profile of unknown process variables. Once a

satisfactory profile is found, confirmation tests

can then be conducted to ascertain the profile

experimentally. This could significantly reduce the

time and effort required in drug formulation tasks.

To demonstrate the idea, an experimental study in

Transdermal Iontophoresis (TI) has been con-

ducted.
Iontophoresis is an alternative drug delivery

method based on electrically induced transport of

drug molecules. It has been found to be an

effective and painless method of delivering medi-

cation. TI is the facilitated transport of drug

molecules through skin with the application of
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an external electrical field [14,19]. It is a new, non-

invasive technique for delivering drugs to patients.

By using electrical forces, it is able to increase the

penetration rate of drug molecules through the

stratum corneum*/the main barrier of drug

transport. Research works on TI have been

focused on the area of developing and testing of

chemicals or drugs transporting across the skin/

membrane [20�/22]. In this paper, we examined the

delivery rate of Diclofenac Sodium (C14H10Cl2
NO2Na, MW�/318.15) [23] facilitated by direct

current across a synthesis membrane in the first 7

h. Diclofenac Sodium was selected in this study

because of its anti-inflammatory, analgesic, and

antipyretic properties. It is normally recommended

for chronic inflammatory conditions such as

rheumatoid arthritis, and osteoarthrities, and for

the treatment of acute musculo-skeletal pain.

A two-compartment (donor and receptor) diffu-

sion cell was designed and fabricated for the study,

as shown in Fig. 2. The drug was prepared in the

form of saturated solution. The phosphate buffer

consisted of 0.178 M of disodium hydrogen

orthophosphate, 0.016 M sodium dihydropho-

sphate and 0.12 M sodium chloride adjusted to

desired pH with 1 M NaOH. Three independent

variables, i.e. pH of the buffer, the ionic strength

of the buffer, and the magnitude of electrical

current, were systematically changed during the

experiment to investigate the effects of the vari-

ables towards the transdermal delivery rate of the

drug. The TI experiment was conducted according

to the following procedures:

1) The diffusion cell with a nitrate cellulose

membrane filter was assembled together by

using silicone sealant, and left overnight to

dry off.

2) The negatively charged permeant solution

was placed in the cathode (negative) com-

partment, and the electrolyte surrounded the

anode (positive).

3) The water level of the water bath was set

above the solution in the diffusion cell in

order to ensure that the temperature was

maintained constant.

4) Electrodes were connected to the power

supply, with the current adjusted to the

desired value for each experiment.
5) The experiment commenced by pouring in

the donor and receptor solutions.

6) Samples (0.5 ml) of the receptor solution

were collected hourly by using Eppendorff

micropipet (volume range�/100�/1000 mm),

for 7 h.

7) Each sample (0.5 ml) was diluted to 10 ml, in

the same phosphate buffer by using 10 ml

volumetric flask.

8) The 1 ml solution, after the first dilution, was

diluted for the second time to 10 ml, in the

same phosphate buffer by using 10 ml

volumetric flask.

Fig. 2. A diffusion cell with water bath constructed for the TI experiment.
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9) Concentration of each sample was deter-

mined by using ultraviolet spectrophot-

ometer.

10) Steps 1�/9 were repeated for each experiment

condition as shown in Table 1. Each experi-

ment condition was repeated four times.

2.2.1. Design of the experiment

For any unknown system, the underlying system

dynamics or the relationships among the process

variables are often difficult to deduce. The RSM is

an experimental design procedure that can be

employed to determine the optimum conditions

of various process variables simultaneously. The

first step in RSM is to search for the optimum

condition based on factorial design or factional
factorial design [11]. The method of the steepest

ascent is used in this step to move sequentially

along the steepest path, i.e. in the direction of the

maximum increase in the response. Of course, if

minimization is desired, then it is considered as the

method of the steepest descent. After determining

the optimum region of the process condition, a

suitable experimental design method such as face-
centered CCD will be selected to test the optimum

condition.

In the present study, the face-centered CCD

approach has been employed to determine the

interaction between the process variables and the

process response. One of the reasons of choosing

the face-centered CCD is that we know the

properties of the drug candidate (Diclofenac
Sodium) and can ensure the region of operability

that is used to cover the region of interest in

experimental design. In addition, the face-centered

CCD is simpler and requires fewer level settings of

each variable when compared with other types of

CCD, e.g. rotatable CCD [11]. Note that one can

find the optimum settings for the process variables

by using the face-centered CCD approach. In the

present study, however, the main objective is not

to search for the optimum condition subject to

various process variables, but to utilize the face-

centered CCD to devise a set of experiments

systematically such that the process variables can

be investigated simultaneously. These experimen-

tal data samples constitute a representative data

set for training the GMM. The GMM is then

utilized to model the drug release process and to

Table 1

Factors and levels of the experiments

Factors Levels

Low (�/1) Centre (0) High (�/1)

pH 7 8 9

Ionic strength 0.100 0.145 0.19

Current 0.5 1.0 1.5

Fig. 3. Procedure of the experimental study using the face-

centered CCD coupled with the GMM.

Fig. 4. The face-centered CCD with three variables.
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predict the drug release profiles. In addition,

outputs from the GMM can be further processed

to provide useful information concerning accuracy

as well as reliability of the predictions, as shown in

a previous study [25]. Fig. 3 shows the flow chart

of the experimental study using the face-centered

CCD with the GMM as a prediction model.
With a three-variable face-centered CCD, 15

experiments (i.e. eight factorial points, one center

point, and six face center points as depicted in Fig.

4) in accordance with the conditions in Table 1

were conducted. Each experiment was repeated

four times. The order of the experiments were

randomized to avoid influence by uncontrolled

variables such as changes in environment, changes
in raw materials, and changes in the conditions of

device. These changes, which often are time-

related, could influence the response. The samples

data collected constituted the training data set for

the GMM. On the other hand, three different

process conditions as shown in Table 2, each with

four repetitions, were used as the test set to

evaluate the performance of the GMM. The sum
of squared errors (SSEs) between the predicted

values from the GMM and the experimental

values was used as the performance indicator

between the predicted and actual profiles, as

follows:

SSE�
Xn

i�1

jti�aij
2

(4)

where ti predicted drug release rate, ai , drug

release rate from the experiments, and n , number

of time points. Note that n�/7 in this study with

one measurement in each hour of the experiment.

In addition, three multiple regression models, i.e.

first-order, second-order model, and third-order

models, were constructed to predict the drug

release profiles. The results were used as perfor-
mance comparison with the GMM.

3. Results and discussion

Table 3 shows the average SSEs (from four

repetitions) for each test set using three multiple

regression models, as well as the overall mean

results. Based on the results in Table 3, the third-

order regression model yielded the best-predicted

results, i.e. with a mean SSE of 0.4409, when

compared with those from the first-order and
second-order models.

In ANN applications, one of the problems often

encountered is the determination of suitable num-

ber of hidden nodes. Although is time-consuming

and laborious, the trial-and-error method is nor-

mally used to obtain a good network structure that

can produce satisfactory performance. The same

approach was adopted in the present study. An
initial experiment to determine the number of

hidden nodes using only the first experiment of

each test set was conducted. There were four

inputs to the GMM, the first three inputs were

the process conditions of pH, ionic strength, and

current, and the fourth input was the time point.

The output was the predicted permeation rate of

Diclofenac Sodium.
Table 4 summarizes the SSEs from a set of

experiments using different numbers of hidden

neurons. Note that 32 hidden neurons yielded, on

average, the best performance (SSE�/0.0562). As

a result, the GMM network with 32 hidden

neurons was selected for further experimentation.

Table 2

Process conditions of the test sets

Test set Operation conditions

pH Ionic strength Current

Number 1 9 0.150 1.0

Number 2 7 0.170 0.8

Number 3 9 0.145 1.5

Table 3

The SSEs from three multiple regression models

Test set First-order

model

Second-order

model

Third-order

model

Number l 1.6045 0.4234 0.2614

Number 2 2.5964 0.2983 0.6257

Number 3 5.0531 0.8305 0.4357

Mean 3.0847 0.5174 0.4409
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Since each test set was repeated four times, the

GMM with 32 hidden nodes was then used to

predict the permeation rate of Diclofenac Sodium

in other replications (other than those used in

Table 4). Table 5 depicts the overall SSEs and the

average results. Based on the results obtained, on

average, the GMM achieved almost 7-fold im-

provement in performance when compared with

the third-order multiple regression model, with the

average SSEs of 0.0655 and 0.4409, respectively.

To ascertain the reliability of the predicted

results, bootstrap was then used to estimate the

Table 4

The SSEs from different number of hidden neurons

Test sets Number of neurons

24 26 28 30 32 34 36

Number 1 0.4170 0.3137 0.1421 0.0321 0.0466 0.0537 0.0276

Number 2 0.1350 0.0821 0.0476 0.0323 0.0383 0.0337 0.1124

Number 3 0.6301 0.4857 0.2026 0.1287 0.0837 0.1698 0.0586

Mean 0.3940 0.2939 0.1308 0.0644 0.0562 0.0858 0.0662

Table 5

The SSEs from four tests with 32 hidden nodes

Test sets Replications

1 2 3 4 Mean

Number 1 0.0466 0.0509 0.0427 0.0216 0.0405

Number 2 0.0383 0.0320 0.0325 0.1036 0.0516

Number 3 0.0837 0.1496 0.1273 0.0577 0.1045

Overall mean 0.0655

Table 6

Bootstrap confidence interval estimates of the SSEs

Test sets Number of resamplings Bootstrap mean Confidence intervals

Lower Upper

Number 1 100 0.0396 0.0279 0.0489

200 0.0393 0.0269 0.0489

400 0.0399 0.0269 0.0489

500 0.0397 0.0269 0.0489

1000 0.0396 0.0269 0.0489

Number 2 100 0.0536 0.0321 0.0873

200 0.0545 0.0321 0.0873

400 0.0531 0.0322 0.0873

500 0.0532 0.0322 0.0873

1000 0.0535 0.0322 0.0873

Number 3 100 0.0985 0.0625 0.1393

200 0.0985 0.0625 0.1393

400 0.0988 0.0625 0.1353

500 0.0989 0.0625 0.1353

1000 0.0982 0.0625 0.1353
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95% confidence intervals of the results from the
four replications. Table 6 depicts the 95% con-

fidence intervals of the SSEs with different number

of bootstrap re-samplings, i.e. 100, 200, 400, 500,

and 1000 re-samplings. One can see that 400 re-

samplings were enough to estimate the associated

confidence intervals as there was no variation in

the estimated confidence intervals after 400 re-

samplings. Generally, the bootstrap means of the
GMM are better than those from the third-order

multiple regression model. Notice that even the

upper confidence interval limits of test sets 1, 2,

and 3 (0.0489, 0.0873, and 0.1353) are significantly

lower than those from the third-order multiple

regression model (0.2614, 0.6257, and 0.4357).

Therefore, from the results and analysis the

GMM appeared to be a useful network for the
prediction of drug release profiles in this experi-

mental study.

4. Conclusion

The feasibility of combining face-centered CCD

and the GMM as an intelligent learning system for

drug release profile prediction has been examined.
An experimental study in TI was conducted to

investigate the applicability of the proposed sys-

tem. The face-centered CCD was first employed to

investigate the relationship between various pro-

cess variables simultaneously. The data samples

collected from the experiments were then used as a

representative training set for the GMM. The

bootstrap method was applied to assess the
reliability of the network predictions statistically.

From the experiments, we have demonstrated that

by using RSM, particularly the face-centered

CCD, as a design-of-experiment tool for data

collection and NNs, particularly the GMM, as a

data modeling tool for profile prediction, a lengthy

and time-consuming experimentation process to

determine the appropriate conditions that produce
a satisfactory drug release profile can be reduced.

To further validate and verify the effectiveness

of the proposed system, more experiments using

data samples from other benchmark problems

should be conducted. Other types of NN models

could also be applied and compared with the

results from the GMM. In addition to NNs, other
data analysis techniques, such as multiple adaptive

regression splines and kriging approximation,

could be combined with the RSM and used as a

prediction tool. Comparative studies to ascertain

the superiority of each technique in data modeling

and prediction should also be performed. These

are the areas for future work.
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